Now Playing Tracks

jtotheizzoe:

A Typographical History of NASA

Data artists and visualization researchers at the Office for Creative Research dug through 11,000 pages of NASA history reports, containing nearly 5 million words, to assemble this typographical timeline of the U.S. space program.

The vertical waves represent the total NASA and percent of national budgets (which is why it begins to shrink toward the right side of the page). The most important words and phrases from each year are listed in lieu of traditional milestones, giving us a unique perspective on the key events that led us up up and away.

Tour the full-size, interactive visualization of NASA’s history here, it’s really something (and it’s also way too big for me to show you on my blog)

(via Popular Science)

pennyfornasa:

 
“To provide for research into problems of flight within and outside the earth’s atmosphere, and for other purposes.” - National Aeronautics and Space Act of 1958

On July 29th, 1958 — ten months after Sputnik 1 was launched into orbit — President Eisenhower signed the National Aeronautics and Space Act. Beginning operations later that year, NASA entered the highly competitive Space Race against the Soviet Union. Culminating with the success of Apollo, the economic benefits and technological advances during NASA’s first decade were immediately felt. Since 1958, twelve astronauts have walked on the Moon, four rovers and four landers have touched down on the Martian soil, and most recently, Voyager I became the first man-made object to enter interstellar space. Perhaps the greatest achievement of this agency, however, has been the success of the International Space Station. Astronauts from various space agencies across the planet have been living and studying aboard the ISS since 2000. NASA has had a rich history, but an even more promising future awaits.

Today, on the anniversary of the National Aeronautics and Space Act, join us by writing Congress to express the importance of raising the minuscule NASA budget to a level that will ensure a strong future for all humanity.

Sign the petition, spread the word:
www.penny4nasa.org/take-action

Read the National Aeronautics and Space Act:
http://history.nasa.gov/spaceact.html
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info
projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.
     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.
     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)
     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).
     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.
     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.
Zoom Info

projecthabu:

     Here, we have the Saturn V rocket, housed inside the Apollo/Saturn V Center at Kennedy Space Center near Titusville, Florida, just a few miles from Launch complex 39, where these beasts once roared into the sky.

     When we look at the enormous first stage of the Saturn V rocket, called an S-IC, we think “spaceship”. Truthfully, the Saturn V first stage never actually made it into space. The stage only burned for the first 150 seconds of flight, then dropped away from the rest of the rocket, all while remaining totally inside Earth’s atmosphere. The S-IC stage is merely an aircraft.

     Even more truthfully, the S-IC stage displayed here at the Apollo/Saturn V Center at the Kennedy Space Center in Florida, never flew at all. It is a static test article, fired while firmly attached to the ground, to make sure the rocket would actually hold together in flight. Obviously, these tests were successful, (e.g. she didn’t blow up), and she sits on our Apollo museum today. I wrote more about this particular stage in a previous post, (click here to view.)

     The rest of the rocket, the second and third stages, called the S-II and S-IVB stages, did fly into space. The S-II put the manned payload into orbit, and the S-IVB was responsible for initially propelling that payload from earth orbit to the moon, an act called “trans-lunar injection” (TLI).

     The particular rocket in this display, except for the first stage, is called SA-514. 514 was going to launch the cancelled Apollo 18 and 19 moon missions.

     The command/service module (CSM) in the photos is called CSM-119. This particular capsule is unique to the Apollo program, because it has five seats. All the others had three. 119 could launch with a crew of three, and land with five, because it was designed it for a possible Skylab rescue mission. It was later used it as a backup capsule for the Apollo-Soyuz Test Project.

As the Secretary General of the United Nations, an organization of 147 member states who represent almost all of the human inhabitants of the planet Earth, I send greetings on behalf of the people of our planet. We step out of our solar system into the universe seeking only peace and friendship, to teach if we are called upon, to be taught if we are fortunate. We know full well that our planet and all its inhabitants are but a small part of the immense universes that surrounds us and it is with humility and hope that we take this step.

The story of Carl Sagan’s Golden Record, humanity’s eternal message to the cosmos 

(via explore-blog)
for-all-mankind:


An orbital sunrise brightens this view of space shuttle Discovery’s vertical stabilizer, orbital maneuvering system (OMS) pods, docking mechanism, remote manipulator system/orbiter boom sensor system (RMS/OBSS) and payload bay photographed by an STS-133 crew member on the shuttle during flight day 12 activities.
(link)

This picture looks surreal. It’s beautiful.
Zoom Info
Camera
Nikon D3s
ISO
800
Aperture
f/2.8
Exposure
1/50th
Focal Length
28mm

for-all-mankind:

An orbital sunrise brightens this view of space shuttle Discovery’s vertical stabilizer, orbital maneuvering system (OMS) pods, docking mechanism, remote manipulator system/orbiter boom sensor system (RMS/OBSS) and payload bay photographed by an STS-133 crew member on the shuttle during flight day 12 activities.

(link)

This picture looks surreal. It’s beautiful.

(Source: fuckyeahspaceshuttle)

jtotheizzoe:

Mars, Mapped 

The USGS has just released a gorgeous new geologic map of Mars, combining data from four separate spacecraft to paint a rainbow-like spectrum of terrain and texture upon the red planet.

See those four bulges on the left side of the spherical projection? Each of those four mountains, Olympus Mons, Ascraeus Mons, Arsia Mons, and Pavonis Mons, are taller than any mountain on Earth, including Mauna Kea (which rises more than six miles from the ocean floor).

Learn more at Wired’s MapLab blog, and view the incredible high-res annotated version at the USGS website

To Tumblr, Love Pixel Union